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XIV. Researches in the Integral Calculus.—Part 1. By H. F. Tarsor, Esq. F.R.S.
Received and read March 10, 1836.

§ 1. Brief Historical Sketch of the Subject.

T'HE first inventors of the integral calculus observed that only a certain number of
formulee were susceptible of exact integration, or could be reduced to a finite number
of terms involving algebraic, circular, or logarithmic quantities. When this result
could not be attained, they were accustomed to develop the integral in an infinite
series. But this method, although useful when numerical values are to be computed,
is entirely inadequate, in an analytical point of view, to supply the place of the exact
integral ; for the progress of analysis has shown many instances of exact relation be-
tween different integrals which cannot by any means be inferred from the infinite
series in which they are developed.

The first great improvement beyond this was made by Faenant about the year 1714.
This most acute and ingenious mathematician proposed the following question to the
scientific world in an Italian journal*: “Given a biquadratic parabola whose equa-
tion is #* = y, and an arc of it, to find another arc, so that their difference may be
rectifiable.”

No answer appearing, he published a solution of the problem in the year 1715+,
and extended it in a nearly similar manner to other curves whose equation is «”" = y,
viz. to those cases where n equals one of the numbers 3, 4, £, 2, 1, 1.

In the year 1718 and afterwards he published a variety of important theorems
respecting the division into equal parts of the arcs of the lemniscate, and respecting
the ellipse and hyperbola, in both of which he showed how two arcs may be deter-
mined of which the difference is a known straight line. These discoveries justify us
in regarding FaeNani as the founder of a new and very curious branch of analysis.

EvuLer, who enriched almost every department of science with new discoveries,
exhibited the complete algebraic integral of the equation

dx dy
Vu+ﬁx+7.r9+8x3+sx4+ 4/u+ﬁ‘y‘+y_y2+8y3+ey4=0;
a remarkable theorem, which long continued to be the ne plus ultra of this branch of

science, little success having attended the endeavours of mathematicians to arrive at
results of greater generality.

* Giornale de’ Letterati d’Italia, tom. xix. p. 438. + tom. xxii. p. 229.
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178 MR. TALBOT’S RESEARCHES IN THE INTEGRAL CALCULUS.

The excellent work of LEGENDRE* was destined to arrange, classify, and distin-
guish the properties of elliptic integrals which are implicitly contained in EuLer’s
theorem above mentioned. In this treatise he has thoroughly examined the nature
of these transcendents, and presented the results of his inquiries in a luminous and
well-arranged theory.

The extensive tables which accompany his work will enable future mathematicians
to make as frequent and convenient use of elliptic integrals as they have hitherto
done of circular and logarithmic ones.

In the year 1828 Mr. ABgL, of Christiania in Norway, published a very remarkable

theorem, which gives the sum of a series of integrals of the form f P:/dff , where P

and R are entire functions of #, of the form 2" 4 a2 ' 4+ ba"2 f...... ; n being
any whole positive number, and a, b, &c. constant coefficients.

This theorem extends much further than EULER’s, in as much as the latter is limited
to those forms of R which contain no higher powers of « than the fourth. It departs
still more widely from EuLer’s theorem, in exhibiting the sum, not of two only, but
of many integrals of the same form. And it must be observed that this plurality of

.. . . . dx .
terms is in general necessary; for if we give to the expression f VT its utmost

generality, it does not appear possible to find the sum of only two such integrals in
finite algebraic, or logarithmic terms ; but it is requisite to combine a greater num-
ber of them, below which number the problem cannot be reduced.

ABEL’s theorem in general furnishes a multitude of solutions for each particular
case of the problem: notwithstanding which it is possible to find other solutions
which appear not to be comprised in his theorem, nor deducible from it

On the publication of this theorem the illustrious LEGENDRE, who at an advanced
age still cultivated his favourite science with all the ardour of youth, was one of the
first to feel its extent and importance. And accordingly, with a degree of zeal almost
unequalled in the annals of science, he devoted a large portion of time to the verifi-
cation and elucidation of the theorem by numerical examples. The result of these
calculations was amply confirmatory of its truth, and it therefore undoubtedly stands
upon the basis of rigorous demonstration.

There can be little doubt that the ingenious mathematician to whom we are in-
debted for this theorem would have arrived at fresh discoveries, of not inferior value,

* Exercices de Calcul Intégral. Paris, 1811. Traité des Fonctions Elliptiques. Paris, 1825.

. . dz dy . . . .
For instance, if = 0, his theorem gives the integral  y=1; but, apparently, it does
1 Fo C JiTat ity gt ' g K) pp y
_ Y1tz +aV2

not give this other integral y® = which was discovered by Faenani (Produzioni Matema-

Vltai—aV?2
tiche, vol. ii. p. 869.).
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if a premature death had not terminated his career, to the irreparable loss of science,
at the early age of twenty-seven.

Before concluding this slight historical sketch of the subject, I ought not to omit
mention of a valuable recent memoir by M. Poisson*, in which he has considered
various forms of integrals which are not comprehended in Argev’s formula.

It has already been stated that the integrals to which ABeL’s theorem relates are

those comprised in the general expression f I:/d Ig’ where P and R are entirely poly-

nomials in 2. Next in order of succession to these there naturally presents itself the

class of integrals whose general expression is P:/EI%’ where the polynomial R is

affected with a cubic instead of a quadratic radical.
But ABevr’s theorem has no reference to these, and consequently affords us no
assistance in their solution. The same may be said with regard to the succeeding

Pd Pd
classes of integrals, -{/-—E, f 7]%, and generally ,gié’ Still less does it enable

us to find the sum of such integrals as f ¢ (R) dx, R being as before an entire poly-

nomial+, and ¢ any function whatever. This is the problem to the solution of which
the following pages will be dedicated.

I may be here permitted to mention, that ABEL’s theorem was unknown to me
until some years after its publication, and that these Researches were nearly com-
pleted before I was acquainted with it. I have, however, made no alteration in them,
but have chosen to present the subject in the manner in which it originally occurred
to me.

I am not aware that Mr. ABeL has left any memorial of the successive steps of
reasoning by which he arrived at his theorem. Probably they were very different
from those which I have employed, and therefore I have detailed at some length my
method of investigation, beginning with the first rudiments of the theory at which I
afterwards arrived.

§ 2.

It was remarked by the earliest inventors of the integral calculus, that there was
a mutual dependence between the two integrals f y da and f xdy, so that if the

one were given the other became known, by virtue of the equation

fxdy+/ydm=w_y+(3.

If therefore one of these forms happened to be more easy of integration than the
other, they directed it to be substituted for it.

* CrELLE’s Journal, vol. xii. p. 89. Berlin, 1834.
+ By ¢ polynomial” I here understand an expression containing at least two different powers of .

242
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There is, however, one case in which no alteration is produced by this substitution,
and that is when the variable x is the same function of y that v is of x; or when

x= ¢y, y = ¢ For then the integral ﬁ dxor / q> x d x has the same form with

fwdy orf@ydy.

In this case therefore
fqowdx -|—f¢ydy”= zy -+ C.

This equation holds good whether f ¢ x d x can be integrated in finite terms, or

whether it cannot.

The equations * = ¢y and y = ¢ «, manifestly imply that a symmetrical equation
exists between @ and y, and its symmetry is the -only requisite condition. In other
respects it may be any whatever.

Notwithstanding the simplicity of this reasoning, it does not appear that any ma-
thematician before Facnani clearly perceived the important consequences which
might be deduced from it. But he has obtained from it the following important
theorem respecting the arcs of the hyperbola.

If x be the abscissa of a hyperbola whose principal semi-axis = 1, its arc

_‘/‘dw\/cﬁx —1

where e is the eccentricity, or the distance between the centre and focus.
Let y be another abscissa, so related to the former that

e 22— 1
ey =4\ @21
e aty? = e? (w2+y2) - 1.

This equation being symmetrical with respect to x and y, it follows that those letters
may be permuted,

whence

coex =
Multiplying these equations respectively by d # and dy, and then adding them,
eg/dr+e.z'dy—'dm\/-~—1-|—dy egyg—ll.

esyrom fun/ ST+ Sin /Y

which is the theorem in question.
Since the arc of an ellipse may also be expressed by the formula f d w\/ ”f-_—_——l

it may be asked whether the theorem applies to the ellipse, or to the hyperbola, or
to both curves?
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Let us therefore return to the equation

2aty? = e (2 + y?) — 1,
whence

1

—_ (x2+3/2)+x23/2=—?

1= (=) =1—7

2

In the ellipse the abscissee «, y are necessarily both less than 1, and in the hyperbola
they are both greater than 1. 'Therefore in either case the product (1 — a2) (1 — y?)

. . . 1 . . . . ; 1
is a positive quantity, .1 — -5 must be a positive quantity, which gives 1> —, or

e >1. This condition obtains in the hyperbola but not in the ellipse, therefore the
theorem is not applicable to the latter. An analogous theorem, however, exists for
the ellipse, which I shall not now stop to examine.

In imitation of the above proceeding, let us make the more general supposition

1
n _n =
ex-—ln

ey = <‘-—""— 2

" —1
whence
enxnyn — (xn +yn) — ],
a symmetrical equation ;

Proceeding as before, we find
v b 0m S LN bt S 4y

G

a® -1

where the notation S_/ is employed to express with brevity the sum of two (or any

number) of similar integrals.
The sums of many other integrals might be found in the same manner ; but I pro-
ceed to more general inquiries.

§ 3.

The first idea of a more extended method occurred to me about fifteen years ago,
when pursuing mathematical studies at Cambridge ; and it was suggested by an at-
tentive consideration of the process by which Faenant had rectified the hyperbola,
as mentioned in the preceding section. The question occurred to me, whether it
might not be possible to combine three integrals in a similar manner, by supposing
two symmetrical equations to exist between three variables ?
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Since we have

myz+C=fyzdw+ﬂzdy -I—ﬂydz,
if we suppose any two equations to exist between the variables, then y and =z are
functions of » which assume definite values when « is given. Therefore also the
product y = is a function of #, which may be called ¢ «.
If now the two equations are symmetrical, it follows that the letters z, y, x may
be permuted ; which gives 2z = ¢y, and vy = ¢ z;

.'.myz+C=ﬁxdm+ﬁyd‘y+‘/€bzd'z

=Sﬁxdw.

It is evident that this reasoning may be extended to any number n of variables
between which there exist n — 1 symmetrical equations, which circumstance renders
them all similar functions of each other.

Let r designate their product xy . ..., and therefore —;— =yg.... or the pro-
duct of all except .
cr4C=f2 d.z’+f—;—dg/ +, &e.
But if % = ¢ x, we have by merely permuting the letters,
= @y,—:— = ¢ g, &c.

r
K
Therefore

r+C=f¢m.dx+/l¢y.dy+,&c.'}

s foudn j C e e L (A

This equation I first obtained in the year 1821, but not having leisure at that time
to pursue the subject much further, I contented myself with making a note of it as
being a subject that deserved to be further examined into. I afterwards found it to
be the key, as it were, of the whole method.

In the year 1825 I resumed this investigation, and endeavoured, by the trial of
various forms of symmetrical equations between the variables, to see whether this
method would lead to new results, or whether, on the contrary, it would turn out to
be a mere variation of the methods in common use.

I here give the results of some of these early trials, just as I find them in the ori-
ginal papers. ‘

Ex.1. Let the 2 symmetrical equations be

1) z2+y+z=a
@) 242422 = P,
a and b? being constants.
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These give
a® — b
prorys=—5——ax+ %

And theorem A. gives
(3.) xyz+C=Jn¢wdx+f¢ydy+/20zdz.

Now here it is easy to verify the theorem, because f ¢ x d x is known, viz.

fqbwdw:agg X %wz-{—?,
and similarly with respect to f ¢y dy and f ¢z dz; .. by addition,

sforde="F"(+y+2) — 5@+ +)+ TELED
or, by help of equations (1.) and (2.),

quzx.dw: const. +§3_j—_y3_3j_f
Although this result differs at first sight from that given by equation (3.),

ngoxdx = const. + xy 2,

yet it is easy to see that they are identical. For since

x + y + =z = const., by equation (1.),
and
2? 4 y? 4 22 = const., by equation (2.),

it follows as a necessary consequence that
i A
3

which verifies the theorem in this case.
In the examples which follow next I shall suppose one of the glven equations to be

r+y+4+3=0.
Ex. 2. Let the other equation be (22— 1) (y2—1) (22 — 1) = — 1, we find

1 4 2%— gt

pr,ory 3 = —-1+\/ r—
Ex.3. Let 2 + y* + 2t =22y 3, we find
2y 3 =2x2+m+Jm=2®x.
Ex. 4. Letx5+y5+z5= — 5, we find
yz=-3 + \/ + 7 =%
In each of these cases therefore we find the sum of three integrals of the form
ﬂm.dw to be equal to ry = 4 C.

=z y % -+ const,,
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Before going further it may be well to adopt, for the sake of brevity, the following
notation.

Let there be any number of variables, three for example; then the sum of their
nth powers or 2" 4 y" + 2" may be briefly written S 2", and similarly if /'« be any
function of #, S fx stands for the sum of fo 4+ fy + fz. Also Szymeansay + # =
+ y = And in general

Sf(@y) =f(@9) +f @, 2) +F (@2 +f (%,2) +f(9,2) +F (%),

being the sum of all the permutations of the letters. A few examples will render
this notation familiar.
Let there be 3 variables, then

Se=2+y+=
Sey=a2y+az+yz
Sa?y =2’y +y?*e+a?z 42+ yte + 2%y
Saty?=a2y? + a?2? + 1222,

Letr=ay2.
S%:yz—‘—wz—l—wy:Swy
S%:%Swy
S%Q-:-TLQS.Z'Z’y?

S— =—Sa"y", &e. &
= a0y, &e. &e.

Let there be 5 variables, , v, 2, y, %, then
Suvey=uveytuveztuvyztuaryz+vaysz &e. & &ec.
The greater the number of the variables, the greater is the advantage of this ab-
breviated notation.
To resume our examples:
Ex.5—Let Sa?y> + a.xy2z + bSay = c. Then supposing, as before, that
r+y -+ 2 =0, we find
2yz=2a—ax— b+ J(Ac+ ) +2aba+ a22® — 4aa3.
By properly determining the constants a, b, ¢, this radical may be made to agree
with any proposed cubic \/a3 + «wa? + Ba + 7.
Ex. 6.—Let 25 4 yb 4 36 =0, or Saf = 0. Here y 2 or ¢ 2 is an implicit func-
tion of x, only determinable by the solution of the cubic equation

3
(m — a2 = 5 a2 m,

where m = y .
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Notwithstanding the complicated nature of the function ¢ «, we still have
Sﬁx.dw:myz + C.

But the most interesting result was obtained by combining the equations

r4+y+2=0
2 yQ zQ

zytarztys=— —5—;

or, in the compendious notation, putting vy z = r,
QJ — 72

Sx=0 Szy =—;

whence
241 4 2

yz2= "/‘r:‘«” - w9=¢‘z‘a
and by the general theorem A

xyz+C=Sf¢w.dm. R ¢

. . . —2d 2
But f ¢ x . d x consists of two parts, of which the latter is f e ¥ = —- There-
e 2 2 2 1 2S — .

fore the sum of three such portions = -+ 0 +=2 S - = —-—r—x—z = —Q—r ; since

— 7~9

by hypothesis Sz y =

Hence if we put

V1ot +”” dw—f¢x da,

equation (1.) becomes

r+C=28Ya.do— 5;

whence
Sfxpw.dm = %r -+ const.
Now this result is highly deserving of attention; for the integral which we have

here called f Jao.de= f Vle 2 d #, is no other than the arc of an equilateral

hyperbola whose abscissa is «, the equation of the curve being referred to its asym-
ptotes. When I arrived at this result, I immediately perceived that (provided there
were no error in the reasoning, of which I at first entertained some doubts,) it was
an entirely new and undiscovered property of the hyperbola. I therefore proceeded
to verify it by calculating numerical examples.

The theorem may be stated thus: If three abscisse of an equilateral hyperbola

: .2
verify the equations Sz =0, Sz y = ~—4-r-—, the sum of the arcs subtended by those

abscissee = £ r -4 const. In order to eliminate the constant, the value of which was
unknown, I supposed one of the abscissee « to assume some other value 2/, and there-
MDCCCXXXVI. 2B
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fore a corresponding change to take place with respect to y and % (since they are
functions of x). These new values may be called " and z'.

At the same time the product xy 2 = r is changed to 2/ y'2' = #'; and the first
set of arcs, which may be denoted by A, are changed for a second set, which may be
denoted by B.

Now the original equation gives, sum of arcs A = 2 » 4 C, and the changed equa-
tion gives, sum of arcs B = $ 7' 4 C;. ... by subtraction, sum of arcs A — sum of
arcs B = £ (r — '), in which result the constant is eliminated.

The accompanying figure 1. represents two opposite equi- Fig. 1.
lateral hyperbolas, with their asymptotes. C is the centre, o
and origin of the abscisse CX = #,CY=y,CZ = z, of which
the latter must be negative (supposing the two former posi-
tive), by reason of the equation @ 4+ y 4 5 = 0. Therefore -
it belongs to the opposite hyperbola. If X P is the ordinate
corresponding to the abscissa C X, the equation of the curve
is CX.X P =1, and thearc subtended by CX is the infinite
arc OP.

Fig. 2. represents the abscissa C X = @, both in its original and in its altered state
when it has become C X' = /. In the former case it subtends the Fig. 2.
infinite arc O P, and in the latter case the infinite arc O P'. But o
in taking the difference there remains the portion of abscissa
X X' subtended by the arc PP, which is a finite quantity, and r
thus the embarrassing consideration of the infinite arcs is avoided. =
Now the sum of arcs A — sum of arcs B = sum of three limited
arcs, of which P P' is one, and the others subtend the portions of
abscissee YY' and ZZ'. Denoting these arcs by K, we have this
equation in finite terms :

Sum of arcs K = £ (r — ).
Now in order to put this equation to the test of numerical computation, it is requi-

site to find three quantities that verify the equations
— 2
4

Se=0 Sevy =

Suppose, therefore,

= 1
Yy = 17535
g = —2'7535,

whence
ryx = —4828l =r.
The equations are satisfied by these values, and also by the following :
Zd = 11
y = 15826
2 = —2'6826,
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whence
Zy ¢ = —4670 =7
4] s ad—a2= 01
Yy —y = —01709 r —r = 01581
g — = 00709

Now we can, without difficulty, calculate the approximate value of the arc (P P' in
fig. 2.) subtended by the portion of abscissa @' — # (X X' in the figure). Calling this

the arc (#), we have
Arc () = 0°1351

Arc (y) = 01817
Arc (z) = 0°0715.
And according to the theorem we ought to have
Sum of arcs = ¢ (¥ —r) = 0°118.
But in this example, arc (#) is to be accounted negative. Therefore we have

Arc (y) 4+ Arc (z) = 0253
— Arc () = 0°135

Sum = 0°118
which is in accordance with the theorem.

Second example.—Suppose, as before,

= 1
y = 17535
% = —27535,
whence
2y = —4'8281.
And also
d= 2
y = 08875
2 = —2-8875,
whence
2y ¥ = —51253;
both of which systems of values satisfy the given equations of condition.
6] . ad—a= 1
y’ — y = —0'866 r— = —0297.
g —z=—0134

By calculation we find
Arc () = 1'1319
Arc (y) = 1:0443
Arc (2) = 0°1350.
But in this example both arc (#) and arc () are negative. Therefore we have
282
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— Arc (#) — Arc (2) = — 1267
+ Arc (y) = + 1'044
Sum = — 0223
Also
7 —pr = — 0297
L@ —r)=—0223

in accordance with the theorem.

I had at first some difficulty to perceive the reason why some of the arcs were te
be considered negative rather than the others. This question was one of a novel
nature, which had not hitherto occurred to analysts, and therefore no solution of it
was to be met with in books. On the other hand, to leave so essential a point with-
out any demonstration was unsatisfactory. But the following considerations appeared
to afford an explanation of this fact.

In the first example, since « + y + z = 0, and both # and y are positive quantities,
z must be negative. Therefore x y is positive, but # z and y z are negative.

Now we have
¥z _ M1l at—1
2 x? g
which therefore must be negative: .. also /1 +a*—1 must be negative. But this
quantity would necessarily be positive if the radical had a positive sign. Therefore
the radical must have a negative sign.
o 4 — o .
%5 = Y1 +y'“ l, this radical has neces-

x 1 __1 . . " .
_é_y — Vit +zf , this radical has a positive sign.

Reasoning in the same manner, because

sarily a negative sign; and because

Attributing, therefore, these signs to the radicals, the three hyperbolic arcs are re-
spectively,

[ P — d , dz  ,
~SEVTFe, =S VTEs A VIR
On the other hand, during the change of z, y, = to &/, ¥/, %' respectively, we have seen

that  and = increase while y diminishes (see equations [4.]); ... d2 and dz are to be
accounted positive, and dy negative. This consideration renders it necessary to write

6] ~/FViTe  ASEITER RSV
And thus the assertion that arc (#) is to be considered negative in this example is
justified.

Second example—Here the reasoning remains the same as far as regards the signs
of the different radicals ; but it appears from the equations [5.], that while » increases,
both y and = diminish, .". d« is positive, and dy and d2 are negative. Therefore the
only difference between this example and the former respects the sign of dz. There-
fore equation [6.] must be written
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“SEITFE S ETES SRV
which justifies the assertion, that in this example arcs (z) and (z) are to be accounted
negative, and arc (y) positive.

Perhaps this reasoning may not be altogether free from objection : I wish it, there-
fore, to be remembered that I am not giving it here as being the most convenient
method of determining the signs of the arcs, but merely as being the reasoning I
employed at the time * when I first met with this theorem.

This theorem shows that three hyperbolic arcs may be determined in an infinity of
ways, so that their sum may be an algebraic quantity. At the same time it shows
that one of these arcs cannot be supposed always to be 0, so that FacNanr’s theorem
respecting the sum of fwo arcs is not an instance or particular case of this. I have
dwelt at some length on this theorem, because the theory of the conic sections has
always been regarded as so important by mathematicians that any considerable addi-
tion to it is thought deserving of attention.

I now proceed to other results which presented themselves in the course of this
inquiry.

Still continuing to suppose the variables to be three in number, it is allowable to
suppose between them any two symmetrical equations whatever; and thence if we
can deduce the value of yz or ¢a in terms of x alone, we may apply the general
theorem A.

Exr.1. Let Sz = a,and Szy = f—léj) , we find

yr _ 1 V1—2*+axd
o T 2 "I"“—“’—xr—,—*-
Ex. 2. Let Sz = a,and Szy = +/2b .2y %, we find

yz=a2 —a—b.x4++/2ba% + (b2 —2ab)a?

Ex. 3. Let vo+ vy + 2= va (or Svz= +a), and let Sz = b, we find
—b S
Vyz:ag —Jar+az=fz,

whence
yr=pe=[fa]’

A great variety of different suppositions of this sort may be made; but if the re-
sulting function ¢ & should become too complicated, little practical advantage would
be derived from the knowledge of its properties. I therefore thought of another
method of obtaining this function, by means of what may be termed ‘ changing the
conditions.” Thus let the original equations of condition be

r4+y+2=0, and ey4arz4tyz=-1,

* 1825.



190 MR. TALBOT’S RESEARCHES IN THE INTEGRAL CALCULUS.

whence this equation results,
yg=ua?— 1.

Now for @, y, x write their cubes (both in the original and in the resulting equa-
tion), and they become
(7] 2+ +22=0
Byt a8t ysB = — 1
and
Y33 =ab — 1.

Taking the cube root of this, we have
yz = /25 — L
Whence it follows that the sum of three integrals
ﬁw(’/aﬁ__l +fdy{/y6_1 —|-‘/21Z\726_'—1 =zy2+ C,

whenever =, y, s satisfy the two given equations of condition [7.], which may be
briefly written

Sz =0 Sadyd = — 1.

Here we changed the conditions, by writing &’ for 2. We might have written 2™ for 2,
and thereby obtained a more general result*. ILven values of » must, however, be

excluded, because the equation 2™ 4 y" + 2" = 0 would otherwise be impossible.

1 1
Ex. 4. Let Sz =a, and S — = -, whence

_abx—ba®
y2=""=5

Now if we write for , y, 2, a, b, their square roots, these three equations become
vVe+vVy+ ve=va,

VitVitVi=Vi

—  WVabx — Vb
VyE= g =1

and

whence

yz=¢z=[fa]%
Many interesting theorems may be obtained by this method of ¢ changing the original
conditions,” but these examples of it will suffice for the present.

I now perceived that the hypothesis upon which my method was grounded, viz.
that » — 1 symmetrical equations existed between » variables, was the same thing as
to suppose that these variables were the roots of an equation of » dimensions, one of
whose coefficients at least was variable, the others being either constants, or functions
of the variable one. This consideration introduced a great degree of clearness and

* Viz. the sum of three integrals, like / d @ /2" — 1.
gy
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simplicity into the subject, besides facilitating in no ordinary degree the progress of
research. For instance, suppose there are 3 variables, and let 2 + vy + s =p, 2y
4+ 25 +ys=gqgand zy s =r, then 2, y, 5 are the roots of the equation
wW—pult+qu—r=20,
where the variable » denotes indifferently either of the variables @, y, orz. This new
letter » is only introduced for the sake of clearness, since we may equally well say
that z, y, = are the roots of the equation
B—pa®t+qr—r=0,
or of '
P—py+ gy —r =0, &c.
This latter mode of expression is often more convenient. Now the function ¢ z,
which we wish to determine,

and since p, g are here supposed to be given functions of r, we may find the value

of T:' in terms of 2, provided we can solve the algebraic equation

»—pattqga—r=0,
with respect to r.
Ezample. Let us resume the question concerning the sum of 3 arcs in the equi-

lateral hyperbola. The equations of condition were

r+y+z=0,
—-x‘zygzg
2y +arst+ys= R
or
—_ 2

p= 0, q= V]
<., Y, 2 are the roots of

7.2
ﬁ—zm—-r=0.

This equation (arranged according to the powers of r) is

Z

—_;‘;-—.1'2-—7'-!-.703:0,

or
2y 4 2 —
ri4+—.r—42°=0,
whence
—-.--2 -2 1“
e N
and
r —2 . 21 + 2t
TE Rt/ — =0ua

which agrees with the former result. But now we are able to point out with clear-

ness the limits of the possibility of the theorem. For the cubic equation
2
2 — % w—r=0
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being compared with the form
»—ax+b=0,

b2 a3 72 76 &
must have impossible roots when — > 5=, or when — T2 o Ol > [gan ©

16:27 > rt. Hence it appears that there are 1mposs1ble roots whenever r is less than
Y16 x 27 =2 .Y 27 = + 4'559.
Accordingly in our numerical examples it will be seen that the values* of » are not
contained within these limits.
Another example. We have found (page 183. Ex. 3.) that the suppositions Sz = 0,
Sat=2r, give
Here z, y, z are roots of 23 4 ga —r =0, and we eas11y find from the doctrine of
equations that ‘
Sat=2¢% . 2¢=2r, c.¢?=r
Therefore x 4+ q & — ¢> = 0. Solving this quadratic equation with respect to ¢
we have
X
=5 +t73 \/ 22 4 2%
But since
x3+gm—r=0,—;—=.r2—|-g.

er

o= 4wt St LAk =200,

which agrees with the former result.

Another example. Let 2® + ¢ & — r = 0, which gives for the first condition

Sz =0.

And let the second condition be
r’+cr=¢+aq+b,

a, b, ¢ being constants. We find

2% + % & —% +vX

x 1 — 2? ?

where X is a polynomial of 6 dimensions.
Now let the n variables @, y, 5..... be roots of a" —pa™~'4..... +r=0,

where I continue to denote the product of all the roots by »; we have still ¢ 2 = —

Let the coefficients p, &c. &c. be replaced by their values in terms of = (which are
supposed given, by means of » — 1 equations of condition). Then let the equation be
arranged according to the powers of 7, and the solution of it will give the value of »

in terms of «, and therefore the value of —;;— = ¢a.

* These were r = — 4'83, » = — 4'67, r = — 5°13.
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Now if it be considered that this method extends to any number whatever of
variables, and that the coefficients of the equation may be any functions of each other
that we please to make them, it will appear at once how wide a field of inquiry here
opens before us. It was the wish to reduce these extensive but rather complicated
results to something like a clear and connected system which obliged me to defer
the publication of them longer than I should otherwise have wished, by which means
I lost the priority which at one time was in my power of announcing the existence of
this new branch of analysis; for the results hitherto mentioned, together with many
others, which for the sake of brevity I omit, were obtained in the years 1825 and
1826, and consequently two or three years previously to the publication of AseL’s
theorem. And it will be observed that they comprise large classes of integrals which

are not contained in his formula
Pds
VR
Of this I have given an instance in the integral,

Sda3fF=T,

But an unlimited number of such forms may be found by the method I have
pointed out of “changing the conditions” at first established between the variables.
We may conclude therefore that if , y, z..... are the roots of an equation of = di-
mensions, having at least one variable coefficient, and if we can find the function

and the more general one,

Px = —;— in terms of #, we may thence deduce the algebraic sum of the » integrals,

f¢m.dw+f¢y.dy+ .....

But the inverse problem still remains. Given the function ¢ x, or the integral
f o .dux, to find the equation
—patT 4L +r=o,
of which z,y,z..... must be roots, in order that S f px.dx may have an algebraic

sum ?

This is evidently the most important part of the subject, for in applying the method
to practice the form of the function ¢ 2 is given beforehand. That this research
requires methods of its own will appear at once from a simple example.

Let f 1+ 2. dx be the proposed integral, where » is any whole number. Let

NATY N Y =—:—.

MDCCCXXXVI. 2c¢c

us first suppose
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This gives

r=le+w”,

or

T gt — 2= 0,
an equation, the product of whose roots must be 4 2. But by the hypothesis this
product is always represented by ». Whence it follows that no solution of the re-

quired problem is effected by the supposition N 14 a"=-. And at the same time

£
we see that in order for any supposition to be successful, it is necessary that the re-
sulting equation, arranged according to the powers of @, should have r for its last

term.
Now let us remark, that if S f ¢ @ . d 2 has an algebraic sum, then S f (Ya+2%de

has likewise an algebraic sum. For it equals the former sum, with the addition of

. 1 . . I " .
S/atdw,or g (2T Ayt T gt T L ), which is an algebraic quantity.

In the same way we see that S f (Y o4ma* 4+ na® 4 ....)dxhas an algebraic sum
if m, n, a, b, &c. are constants, and if there are any number of such simple terms of

the form m 2°. Hence if the proposed integral be f J @ .dx, and the supposition

¢ @ or ;T = + 2 does not succeed, we are led to try the suppositions

—gle“r—l—w L=¢x+x+x2,&c.&c.

>

Ezxample. Let the integral f Yya.do= / 1+ 2. da as before. Suppose

NAT = % + &/ 1 + r, whence we deduce

an equation which has n roots, whose product is ». We also find

1+r=1+a‘”—.z'\/ﬁ7;‘+%,

whence
” z o
— = =1+

or

X .
pr=a""'4 T -4

And therefore since’ S f ¢ dax has an algebraic sum = r 4 const., it follows that

S f < 2 d x has an algebraic sum also, viz.
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SSv"""de+ S frda— (r+ const)

or
1 1
- Sa" 4 5 S 2% — (r 4+ const.)

But if the form of the proposed integral / J @ . dw is complicated, no doubt it would
be difficult to find an equation like

%:i#,x—[—mmu—l—n&’b-l— ..... s

such that when developed and arranged according to the powers* of  its last term
should be ». Probably this is not possible in general. And yet the proposed in-

tegrals S f @ d » may have an algebraic sum. For hitherto we have tacitly sup-

posed that this algebraic quantity, if it existed, was the product of the variables
= r - const., since we have derived all our reasonings from the theorem

.ryz...:fyz,...d.z’+ rz....dy + &e,

But it is evident that the algebraic sum may as well have any other form as the one
in question. It may be a constant or any symmetrical combination of the variables.
The foundation of our reasoning has therefore hitherto been too limited, and requires
to be extended. Let us therefore direct our inquiries to the attainment of a more
general method.

§ 4. Ezposition of a more general method.

Ife,y,2..... are the roots of any equation,

n — 2

at—patT 4 pamm L =0,

then not only the coefficients themselves p, p/, p", &c., but also all combinations of
them, are symmetrical functions of the roots. Let v be a general symbol denoting
any one of these coefficients or of these combinations. Then v may be considered
either as a function of all the roots, or of only one of them. And in the latter case
this root may be changed for any of the others without causing any alteration in the
value of v.

Example. Let there be two variables » and y, roots of 4?2 — v & 4+ 1 = 0, which
may be also written y2 —v y 4~ 1 = 0. Then v if considered as a function of both
x and y, is equal to @ 4 y, the sum of the roots. But if considered as a function of

.. 14 2 . . . .. 144
x alone, it is = — And if considered as a function of y alone, it is = v

_1+x“__1+y2
T = Ty

* The coefficient of the highest power of » being always supposed = 1.
2c¢c2
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or  may be permuted for y. Hence also

14+ a2® 1+ 3
0. =0

¢ being any function.
1 4+ a®
x

Quantities which (like 0. in this example) are not changed in value by

permuting the roots, maybe termed * symmetrical functions” of the variables z, y, 3, &c.

or simply ¢ symmetricals” of the equation whose roots are z,y,z..... Thus the
. 1+ 22 . . ]
quantity ¢ ( tx ) is a symmetrical of the equation
2?—vae+1=0.
1 —2®
£

2

But the quantity ¢ ( ) is not a symmetrical of it, because

1 — 2
to 2 .
Y

Ezx. 2. Let z,y,%, be roots of 2° — v 4 1 = 0, which may also be written
y¥—vy4+1=0,o0rz—vz+41=0, whence
1+ a8 1-}—3/“5.__1+z3

is not equal
PA

= — — »

x Y 2
whence also
14 2% 1+ 1 4 =3
b =Ty =
1 + 28

Therefore the quantity ¢ . is a symmetrical of the equation 2* — vz 4+ 1 =0:

1+ a? 1+ a*

. . . + »?
is not a symmetrical of it, becanse — —7

. ]
is not equal to

but ¢ .

x
These things being premised, it is evident that the same quantity may be a sym-

metrical of one equation and not so of another. Therefore the problem arises : 4ny

quantity being given, to_find the equation with respect to which it is symmetrical 2

1 1 2
Ezr. 1. Let — Rkl

g &

2
= be the given quantity. Put

= v, v being a general symbol

for any symmetrical quantity :

2 —va4+1=0 .
is the required equation, and the indeterminate v is thereby determined to be the sum
of the roots.

1 ,3
Ex. 2. Let Rl

x

l+w3
x

be the given quantity. Put
@ —vae4+1=0

is the required equation, and — v is thereby determined to be the sum of the pro-

ducts of every two roots *.

=?:

* Another example.—Let Lo+ 2 pe the given quantity. Putit = v:

11—
S+ (14 v)e4+(Q—~v)=0
is the required equation, and (1 + v) is determined to be the sum of the roots # 4 y, and 1 ~ v their pro-
duct #y. ‘Whence, by eliminating v, we find the following relation between  and y: 2y — (v 4 y) = 2.
This example will be referred to hereafter.
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Ez. 3. Let z + o/1—22 be the given quantity. Put z44/1—a?=v:
Sov—a)P=1—2a?
222 —2va 4+ (2—1)=0

2 — 1

g =0

2 —vz -+

. . . . . . P —1
is the required equation, and v is determined to be the sum of its roots. Also 4 5

is equal to their product zy. In other words, the equation must be such, that its
.ps =1

roots z, ¥, answer the condition zy = (x_-l-_!é)a__’

_ 1 . . 1

Ez. 4. Let  + & — be the given quantity. Put 24 v — =wv:

1
. 2 —
S v—e = —

e —=2va2+ vl —1=0
is the required equation, which is thereby determined to be a cubic, the product of
whose roots = 1, and » is found to be half the sum of the roots.

Case of exception.—It is essential to remark, that when the given quantity contains
only one power of z, it cannot be a symmetrical. Ez. o/1 4 2" cannot be a sym-
metrical ; for if it could, we should have /1 + 2" = /1 + " = /1 + 5" = &e.,
whence z = y = z = &ec.; whereas we suppose the roots to be in general all different
from one another. With this exception the required equation may be easily found
in most cases by putting the given quantity, or f# =wv. And if the roots of the
equation thus found are denoted by 2,y,2...... it is an immediate consequence
of the hypothesis that '« = fy = f# = &c. Thus in the last example we have

ety 3 =r+y/2 =241+

Let us now suppose that S d «, the sum of the differentials of the roots, or dz + dy
+ d z &c., is multiplied by a symmetrical, that is, by one of the above-mentioned
quantities f#. The product is fo.do + fr.dy 4+ fo.dz 4 &c. But in conse-
quence of the equality fx = fy = fz = &c. the result is the same, if the first term
is multiplied by f x, the second by fy, the third by 'z, and so on. So that the pro-
duct is fo.dao + fy.dy + f=z.d=z + &c., which is our abbreviated notation
=Sfz.da.

Sfe.Sde=Sfoe.de. . . . . . o o o 0 (L)

This theorem is of the greatest importance, and will be of constant use in the sequel.
It must not be forgotten that it is only true when f 2 is a symmetrical, and therefore
capable of being represented by ». Replacing f' by v, it becomes vSdr = Svd.a.
In this form it is self-evident, because v remains the same, however the letters
2,9, 2,. ... are permuted.
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More generally, if the quantity S+) @ . d », which means J2.dr 4+ Jy.dy +Jz.dz-+
&c., is multiplied by f &, the product may be exhibited in the form

Saedo.doe+fydy. dy+fadz.dz + &e,

which in our notation is S f @ 4 @ . d . Whence the theorem

SJaeSdor. de=Sfrdor.dy, . . . . . . . . . L (2)
which may also be put in the self-evident form

vSdr.de=Sv)r.da.

Equation (1.) is a corollary from (2.) when 4 & = 1.

These results may be comprised in a general rule, viz. that whatever be the nature
of the differential } ».da, if we multiply the sum of a series of such quantities, or
S+ @.dw, by fo any function of », the multiplication is effected by introducing f @
within the sign S, provided (and this is the essential condition) that f« is a symmetri-
cal of that equation of which all the variables are roots. It is upon this principle that
the method which I am about to explain chiefly reposes.

Suppose f X . d x to be the proposed integral, X being any function of ». In the

first place we have to determine the number of the other variables v, z, &c., and also
the nature of the equation 2™ — p 2"~! 4 &c. = 0, of which they are roots. And this
may in general be accomplished by the following process: Assume X to be a sym-
metrical of this unknown equation, or that X = »; then if this equation X = v can be

cleared of radicals, &c., (as in examples 1, 2, 3, 4,) it may be ultimately reduced to
the form

v —patt P " =0,
where p, p', p”, the coeflicients, are either constants or functions of v. The index =
of this equation determines the number of the variables.

Let Y be a quantity containing the variable y, in the same manner that X contains
2, and let Z contain 2 in the same manner, and so on for the other roots. Then
v=X =Y = Z = &c., in consequence of the hypothesis that X is a symmetrical of
this equation. Therefore the sum of the foliowing series of differentials,

Xde+Y.dy+7Z.dz+ &,
is equal to X (dv +dy + d=z 4 &c.)
=X.Sder=vSda.

Now S dx = dp, where p is the coefficient of the second term of the equation

" — pm"_]‘ + p’ at =0;

and, as we have before remarked, p is either a constant or a function of v = ¢ . v.
First let it be a constant: then

dp=8Sdar=0,
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which gives
Xdo+Ydy+Zdz+....=vSdx

=0,
whence we deduce the very important consequence

fX.dx +fY.dy +fZ.dz+....=const.,

which is true, whatever be the nature of the function X, provided only that the co-
efficient p is constant.
Secondly, let p = ¢ v,

Sodp=d.ov,
S Xdoe+Y.dy+Z.dz 4 &e.=v.dov,

.'.‘/'X.dw—lj/.Y.dy—}-fZ.dz—l—&c. :/.v.dcg)v;

and therefore the sum of the integrals, or S f X .dw, is known, whenever the
formula f vdowv is capable of integration; or, which is equivalent, when the form
/ pv.dv is capable of integration. These consequences flow, with respect to the
proposed integral / X .da, from the supposition that X is a symmetrical of the equa-

tion whose roots the variables are. But a much more general method is attainable,

by putting the proposed integral under the form / E}Sx .4 @ d ., and then assuming
the quantity % to be a symmetrical of the said equation *.

Therefore % may be represented by the general symbol », and the proposed inte-

gral byfv Aa.dao.
The series of differentials

Xdo+Ydy+7Zdz + &ec.

may therefore be written
vdode+vdydy +vdadz + &e.
=v(Jode+Jy.dy+ &),
=vSda.dae.

Therefore, whenever it happens that S v.dv =0, we have vS{ v .da = 0,

cfXda +)Ydy+ [ Zds+ & = const.:

which we write

* Under this new supposition the quantity X of course ceases, in general, to be a symmetrical of the equation.
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and since +J x is arbitrary, this condition S+ »da = 0 may frequently be realized.
But it will be observed, that every change in the form of +J # changes the equation
between the variables. But if S+ # d » is not = 0, as it generally is not, it must be
a quantity symmetrically composed with respect to all the variables, and therefore a
function of v, since all the coefficients of the equation are functions of v, or constants.
Therefore it may be represented by d.¢ v,

o Xdo+Ydy+Zdz+ &e.=vSYrde
=v.d.ov

o Xda +fYdy+ & =fvd.po:

and therefore the sum of the integrals is known in all those cases in which f vd.pv

can be integrated.
The most direct and advantageous method of treating any proposed integral

. / X da, is to make one of the two suppositions above mentioned, viz. X = v, or

X =v.+ 2. But the supposition X = v 4 ) 2, also, often leads to simple and satis-
factory results. Our choice, however, is not limited to these forms, but may include
others that are comprehended under the general formula X = f (v, #), each of which
may perhaps find its application in special cases.

This process, in all its generality, constitutes the method which I now propose.
The use and application of it will be best shown by examples.

§ 5.

Direct integration of the formula f X .d x, when that is possible, confirms and

illustrates the above results, of which it will be convenient to adduce a few simple
examples.

Let there be two variables «, y, roots of @2 — va 4 1 = 0. Therefore the quan-
1+2°  149°

tity — = v is a symmetrical of this equation. And we find
v+y=v cdat+dy=dv . . . . . . . . . (L)
-1 %z dy
ry=1 ..7-1—7—0. e e e e e e e (2)
224 yt=1—=2 caxdrtydy=vdv;. . . . . (3)
which results may be thus written :
Sde=dv . . . . . . . . . . . .. (L)
dx

Szde=vdv.. . . . . . . . o . . . . . . (3)
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3

Multiply each of these equations by the equation L v, and we find

L S de=vdo . . .. (L)
14+ 22 _dx
xST=O..(2)
1+
3.)

v 14 2°, . . e
But because ——= is a symmetrical, we may, according to the general principle,

introduce it within the sign 8.

.'.Sl-’;wgdw=vdv R ¢ |
2

ST dr=0 . . ... .. @
SA+a2)dae =2dv. . . . . . . . . . . . (38)

The integrals of these equations are
*S/] _;xgdw=%+const. N |
Sfl :Qw de=const. . . . . . . . . . . . . . (2)
Sﬂl +2?)da= —? 4const. . . . . . . . . . . . (3)

And we propose to verify these three results by direct integration. First then we have

2 2 2 2
‘/q‘;x dz 4+ lzy .dy=w;y + log # 4 log y - const.

But

zy=1.loge +logy =0,
and

f1+.z' da +/’ dj——+const N ¢ B

Secondly we have

* Tt is indifferent whether we write S ﬁr f S, and we may remark that the signs 8 ﬂ may often be per-

muted, Thus if there are two variables,
Sﬁw:ﬁdw:m-{—y
dSz=8dr=da+dy
-—clS.z'9z Sd—_wdw-l-ydy

MDCCCXXXVI. 2D
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1 + 2® 1
+ dax +f +y dy=(z+y) — (— —)+const
=@+y) — 1 y) + const.  ». (2.)
= const.
Thirdly we have i
SO+ da+ [+ dy=@+y) + 2L + const
yiey=@—rTy 3 .
But the formula makes it
=—1§+const...............0(3.)
It is necessary therefore to show that these two results are in accordance, or that

24y

or that
23 + y? = v® — 3 v + const.

This may be shown by multiplying together the equations

a4y =102 —2,
24y =uv,

B+yPtey@+ty) =0v"—2v,
zy=1l,ande+y=vw
4y =103 - 30

in accordance with the formula.

I will now apply the method to another example, which conducts to a new and
2

which gives

and since

is a symmetrical of the

interesting property of the cubic parabola. Sincegb1

equation 22 — vz -4 1 = 0, (as has been already remarked) we have, as a particulac

instance of this,
1 4 22
x

= a symmetrical = v v.

Multiply this equation by Sdz =d v,

. 1 4 2?
\/ p Sdae = ,Jv.dv,
Svl -;xs.dw=./v.dv.

The sign S being thus transposed because \/ . ;x

or

2

is a symmetrical.
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The integral of this last equation is

2 3
s/ do= 2 v 4,
which means that

11V et [N/ dy =4yt 4G,

provided that zy = 1. For since z, y, are roots of 2> —va +1=0,2+y =, a
variable quantity, and zy = 1 is the only condition which the variables must satisfy.
Now assume z = #%, y = 2, and the relation between the new variables will be
w22 =1, or ut = 1; and equation (1.) becomes, when divided by 2,

L@ rC=fSTFd . dut [ JTF . de,

whence the following theorem.
If u, t, two ordinates of the cubic parabola*, are reciprocals, so that w t = 1, then the

. . 1 ;
sum of the two corresponding arcs of the curve = 3 (v + %)* 4 const.
The reader may wish to see this result also verified by direct integration. Since

oo 1. . .
then u ¢ = 1, let us write — instead of ¢ in the equation

—;—(ug—l—t?)%+C=f\/l—{—u“.du—l—‘/;/l—l—t‘*.dt,

and it becomes

Lt b ) o= ST du = fof T L,

or
1 (14 uh)F S—
3—(———;“—) +C=‘/ﬁ~/l+u4.du(l—alz),

which ought to be identically true, whatever be the value of ». To see that it is so
in reality, we have only to differentiate the first part of the equation, and we find its

differential to be
(1 + u%)3

2,\/1—|-u4.du-—-—~1;4— du

— JTFw du (2= 25 = T (1 - 2),

which is the differential of the second part of the equation.
Let us now show the application of the method to formulee containing cubic ra-
dicals.

* The equation to the cubic parabola, whose coordinates are u, %', being 3 u' = 2, it follows that the arc

=fduvm

2p 2
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Resuming the former equations
Z2—=ve+1=0 v=

sy 3f1 4 a®
\/v—\/ —.

Multiply this equation by S dx (= dv)

. dv = A EE S da.

31+x2

14+ 2%
x 2

we have

But we may introduce (since it is a symmetrical) within the sign S,

_ 3
.'.\s/v.dv=Sr\/1:m2.dw,

3 3 _ 3/1 4 a®
=z v +const._Sf/\/ —.duw

1 4 2°
KA

and integrating

. d x may be found

It is plain that the sum of two integrals of the form f ,\n/

by a similar process, provided always that x y = 1.
Resuming the last example we have

o 3TERE
\/vz(\/x.

If we multiply this equation by S d—-—f— instead of S d x, we have

soslt o IR gde _g OTTR de_ g THE 4,
\s/v.Sx. = e ST-——b p —x—_.S.\/ i cda.
dz . . %

But S —- = 0 in this example *,

.'.0:8\‘714-4'%2.(].1’
x

S/ 4 22
.. integrating we find the sum of two integrals of the form‘/ M L+ 47 daisa con-

x’t

stant, if vy = 1.
Since nothing tends more to elucidate a subject than a frequent recurrence to first
principles, I will remark that this result also follows at once from the supposition

zy = 1. Forif we Write%for Y,
f«\?/l_—ii-p.dm-l— ,\3/1;4y2.dy
fvriw—g.dm—f\’/ﬁﬂz.%
=/ ° 11-;__”_”3.010@—‘/‘\3/1;4'1"2@.1::_/0:const..

* See page 200; or page 208, note.

becomes
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We are now in possession of principles which enable us to attack the general pro-
blem, “To find an algebraic relation between » variables z, v, = ... .. , such that

S da+ fo(Wdy+/ ¢ 2) dz + & = const,

-X being a polynomial of = dimensions with constant coefficients of the form

& —ax" ' b &e. + haFk,
and containing at least two distinct powers of x; and ¢ being any function whatever
of the said polynomial.

It does not appear that any mathematician has hitherto proposed this problem.
The principles of our method lead to the following solution :

LetX,ora"” — aa® ' 4 .... 4+ ha + k = v, v being a variable quantity suscep-
tible of any value *.

At — g L +he+ (k—v)=0.

This equation has only one variable coefficient, viz. (¢ — v). Therefore the values
of its » roots depend upon v, so far, at least, that when v changes its value, each root
(generally speaking) undergoes a corresponding change. Also the sum of the roots
2+ 1y -+ %4 ....= ais constant.

sdrtdy+dz+ ... .. = 0,

Sdae = 0.
Since v = X, ¢pv = ¢ X. Multiply this equation by Sdx = 0,
SovSde=0¢X.Sdx
S 0=0X.Sde=S¢X.dx
{because ¢ X is a symmetrical of this equation)

.. const. = Sf¢X.dw,

which therefore is the required solution of the problem.

or

Example.——Let_/. /B x+1.dxbethe proposed integral. Assume 2*+x-+1=v,
L@+ re4+ (1 —0v)=0.

* To suppose X = v is the same as to suppose X to be a symmetrical of the equation between the variables
(as recommended at pages 158, 200). Whence also ¢ X is a symmetrical of the same equation. The symbol v
retains the same meaning as before, viz. that of a quantity independent of @, or which continues to have the
same value when « is permuted for any other root of the equation. I shall give it this meaning throughout the
present memoir. :

The solution given in the text may be expressed in other words, by saying that any two of the variables, as
for instance « and y, are mutually connected by the equation

S S +he=y"—ay" 4+ ..... + hy,
whence of course it follows that X, or a® —aa™ '+ ..... + % + k, does not change its value when # is per-

muted for y, and therefore it may properly be denoted by v, according to the acceptation which we have hitherto
given to that letter.

2 —aa"
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Attribute to v any numerical value, and let the three roots of the equation then
be m, m/, m". And when v has some other value, let the roots be n, %', n". So that
while v has changed progressively from one value to the other, the root m has pro-
gressively changed its value to n, the root m' to #, and the root m" to ».

These things being thus understood, the meaning of the theorem is, that the value

of the integra!fa’ /7 + x +1 taken between the limits @ = m, = n,

-+ its value between the limits m/, #/,
+ its value between the limits m", »’,

= a constant.

If the question be viewed geometrically, since the roots of an equation are the
intersections of a curve with its axis, a progressive change in the value of (A—v), the
absolute term, is equivalent to a displacement of the axis parallel to itself, in conse-
quence of which all the intersections change their places simultaneously.

In the case of two variables, we have simply

X=a2—ax+b=v,
or
22— ax+ (b—v)=0.

And if @, y, are the roots of this equation, the theorem becomes

f@X.dx +f¢Y.dy= const.,
¢ being any function.

Now in this particular case the theorem admits of a very simple demonstration.
For since  + y = a, y = a — x; and substituting this valuein Y =y?> — ay + 0,
it becomes (¢ — )2 —a (@ — x) + b=a%>— ax 4 b: also dy becomes — d x.

o0 (y?— ay + b) dy becomes — ¢ (22 — ax 4 b) d«.

Therefore
p(@—ax+b)de+o(y*—ay+0)dy=0,

oX.de4oY.dy=0
.'.f@X.dm—l—f@Y.dy:const.,

which was to be demonstrated.
Let X = 2™ — aa™ ' 4 ....as before, it may be shown upon the same principles

or

that S/¢ X . &™dx = const., provided Sa™dx = 0, or S 2™ 7! is constant, that is to

say, does not contain v; which depends on the relative values of m and n. Also we
may obtain in a similar manner the solution of the following problem, viz.

S f o (”XX’) d x = const.,

where X isa polynomial of » dimensions, and X' another polynomial of not more than
n — 2 dimensions. For, putting
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X
X ="
z, y, &ec. &c. are roots of
X—-vX' =0,

which is of the form

" —ax" ' (b—v)a" "% &e. =0,
where

S # = a = const.,
and therefore

Sda=0 ~8¢(3)de=0(3)Sde=0,

qub (_X}S') d x = const.

I will now add several examples, and I request the reader’s attention to the direct-
ness with which their solutions are obtained by means of the foregoing principles.
In the present paper I have avoided the use of transformations, except that of = u”,
because they are unnecessary to the success of the method, and that I am here con-
sidering general principles rather than individual results.

§ 6. Examples.
Ez. 1. Let the proposed integral be
dz
V1 =%
This is Mr. LuBBock’s first example in his paper on ABevr’s theorem in the Philoso-

phical Magazine*. The result which he finds is equivalent to this, that if x and y
satisfy the equation

. —(x+y)=2,
then

Vl_zﬁ+/vl = const.

For the sake of comparison I will take thlS as the first example of my method, and
supposing its solution to be unknown, proceed to investigate it as follows :

fvii—%a may be put under the form

f(l_‘z)\/l+.z'+x’?

1l —2

Put
142 +2%
1—x

(1+v)m+(l—v)—0

x and y must be the roots of this equation+,

* Vol. vi. p. 118. -+ See the note in page 196.
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et y=—N04v) zy=1-v
- (x + y) =2,
which is the equation of condition found by Mr. LusBock.
Again, the sum of the integrals

d 1 d 1

=ity + i s
1/d d '

=f4/‘;(1~:_‘x‘:r+r_‘% =f0=COIISt.

—(@+y) =2
QA=—aY1l—y=14+2y—(2+y)=3
'log(l—m)+log(1—y)=log3
—— =10

because, since

1 -
*. sum of the integrals = const. Q. E. D.
Ex.2. To find the sum of three integrals of the same form.

2? 1
‘/;/l —maybewrlttenf————\/l_x. Put T—= -

a3 ovat—1=0.
The three variables z, y, 3, must be roots of this equation,
wzyzs=l,andry +axz3+4+yz=0.

\/1 —a® \/—

Multiply this by § 2% = 0%,
22 dz
.'.\/1——_:—&38—[:0.
a° dax dx
1—-a’3S '_-S\/l——x3 x Svl_ﬁ

S_/l/l = const.

Here we have

But

S ==

4/

* In any equation whose last term is constant, S %f = 0. For

gle _de  dy  dz 4 o0
z z oy z
=dlogz 4 dlogy + &e.
=d.log(eyz....)

= d.const. = 0,
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*. the sum of the three integrals is constant, provided that 2y + vz + y x = 0, and
that x y x = 1. It will be observed that the solution is simpler in the case of three
integrals than of two.

Ez. 3. Supposing the relation between z, y, = the same as in the last example, to

find the sum of three integrals of the form ‘/% Since

V=7
v T AV 1—g®

or in other words, since

X . . .
Tiosisa symmetrical of the equation
B4 vat~-1=0,

if it be multiplied by S d x the result will be

rvdx
Vi
Also
Se=—v - .Sdaex=—dv
, xdx 1 _ —dv
'54/1-—.&_ 5 Sdx= Ve
Therefore
xdx
S /= = const. — 2 v,
Ex. 4. The same suppositions continuing, required the sum of three integrals of
2
the form ;ld_ As before,
vl
= =
Multiply by Sz d «,
2 dx
SVTT——?_ —Sxdm—-dv\/v,

(because the equation 2% +-va? — 1 =20 glves Sa=1? -.Saxdr=vdv)

x*d
Sf«/ ad —-—v " -+ const.

2
But since 1 dz 5 is a form which is readily integrable per se, it will naturally be

asked whether the result of direct integration is the same as that given by our for-
mulze. This example therefore affords a convenient opportunity of showing the close
accordance between this branch of the integral calculus and the theory of algebraic
equations.

By direct integration,

dzx )
Sfjl_ = = = (VT=2 +/T=5 ++/T=7) + const.

MDCCCXXXVI. 2E
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And by our method,

. it remains to verify that

NI =2 +/1 -y +/1 =0
In order to demonstrate this, let us resume the orviginal equation 2’ +va*—1=0,
which gives va? =1 — 2%,

v =41 =2,
Vo.y=1-4
Vo.s =T
N1 =P+ T =+ T—F=v@+y+2)
=40 (—v) = —o'. Q.E.D.

and similarly,

dz
Ee.5. [ sy vo e

This is a function of the binomial 2% 4 22, which being put = v, we have
4 22— v =0.
The three roots of this equation are the variables that answer the problem.
Putting Vv 4+ ~/v = @, the sum of the three integrals becomes

dx d‘y
TR TR **—f** Sda;
but Sdx = 0, because 2 +y + 3= — 1,

. sum of integrals = / 0 = const.

Ex. 6. ,/:Zx V14"
Here we cannot suppose N+ rr=va symmetrical quantity, because that would

amount to the suppositiona/ 1 + a® = /1 4+ * = /1 + 2* = &ec., which implies
that x = y = x = &c., whereas we suppose the roots to be in general all different from
one another. This is the reason why it was remarked before, that it was requisite the
polynomial should contain at least two distinct powers of . When that is not the
case, a second power of ¥ must be introduced. There are several ways of doing this ;
the simplest is the following :

Put/‘dx\/] -+ 2 under the form‘/‘rdczz\/l + 2" Assume }t;‘_l.:v,
At —vat4+1=0;

an equation of » dimensions, of which v is the only variable coefficient. The n roots
of this equation answer the problem.
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The sum of » integrals becomes

/.xdm Vv+fydy x/v-l-&c.:f*/;.s.z‘dx.
If n is a number greater than 4, Sa?2 = 0:
S Saxdx=0 ..sum of n integrals = const.
Ifn=4, Sa2=2v, . Sedx=dv,
: f four integrals = /* v/ 2s 4C
. sum of four imtegrals = v.dv=3v+ .
Ifn=3, Saz2=1?% . .Saxdx=vdv,
*. sum of three integrals = f v do = = v +C
o o K — — 5 .
But when = is greater than 4, the equation has impossible roots, therefore the solu-
tion is imaginary. Although, as LEGeNDRE has demonstrated *, these imaginary cases
do not cease to have a real analytical meaning ; the sum of two imaginary integrals

forming a real integral in a manner analogous to that in which two 1magmary roots
of an equation form a real sum and product.

But we may avoid these imaginary solutions by putting f dx/ +}7 in the form

fdw(a-l—bm—l—cm? ....... )\/(a+bx]+tzg =

Assuming, then,
1 4+ 2"
(a+bx+ca...... )2

we may attribute to the polynomial any number of terms suitable to the exponent -,
and then it is in most cases possible to find such numerical values for the constant
coeflicients a, b, ¢, &c., that the resulting equation shall have all its roots real.

Each integral, then, has the form

fda:(a+bm+cm2 ..... )\/5,
and the sum of all

=f\/58dm(a+bx—{—cw2 ..... ),

where Sdx (a4 bx+ca?..... ) = the aggregate of the partial sums
aSde +bSxdx+ cSax?dx + ..

which is the differential of
aSw+g-SxZ+%Sx“'+ ..... 5

and may therefore be expressed in terms of v, since the quantities Sx, Sa?, S a3, &c.
are readily found in terms of v by the usual doctrine of algebraic equations.

* Fonctions Elliptiques, vol. iii. p. 326.
1 In general the number of its terms may be —;—- or _n_%—_l_

2E2



212 MR. TALBOT'S RESEARCHES IN THE INTEGRAL CALCULUS.

Ex. 7./dx\3/1 2

This may be put in the form
3
fdx(a—l—bm ...... )\/(a_‘_z.:'_f” ok

1+ 2"
(@ +ba+....)0°

the reasoning is the same nearly as in the preceding case. The same principles are

and putting

=’v’

applicable to the more general integral f dx /1 4 ", m being a whole number.

These solutions give the algebraic sum of » integrals of the proposed form. But
this number » may be reduced by various methods to a lower number, which is
the minimum that the problem admits of: ex. gr. the lowest number of integrals of

the form f dx ¥'142" which have an algebraic sum is fwo ; of the form f dx V14 ab
is three; of the form f dx\/1 + 210 is likewise ¢hree, &c. &c., which subject I shall

treat of in a subsequent section.

Ex. 8. ‘/1\/.1‘3 — 1
First solution. Put 2* = ¢, and the integral becomes

fdt gy AL
\/t =1 CJP-F
Pat 8 — 2 = v, or 3 — 2 — v = 0. The three roots of this equation answer the
problem.

Sdt
‘. the sum of three integrals -—/ L —fO = const.

(because S ¢ = 1, being the coefficient of the second term of the equation # — #2 —
v = 0 taken negatively, whence S d ¢ = 0).
Second solution. Put 2* = £2, and the integral becomes

£~ §dt 2 dt
\Vt"—l E} B~
' —t—v=0,

and the roots of this equation answer the problem.

Putf—t =,

*. the sum of three integrals = 2 f/d_l = / 0 = const.

(because S ¢ = 0 in the equation ## —7—wv =0 .. Sd¢ = 0), and the sum of the
integrals therefore reduces itself in this case also to a constant.

It will probably be satisfactory to the reader to see some one of these results veri-
fied by arithmetical computation. Let us therefore select this last example for that
purpose. '
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7. Example of an arithmetical calculation of the sum of three Integrals.
The preceding analysis shows that the sum of the three integrals

/\/ +f\/ — +./;3/‘jsz‘:‘“1‘= const.

if 2%, y*, % are v f th ti
it 2%, y*, =% are roots of the equation

£?—t—v=0.
But the form of this equation shows that the sum of its roots = 0, the sum of the
products of every two roots = — 1, while the product of all the roots is a variable

quantity = v»; .*. the quantities x, y,  must satisfy the two following equations,

@y)F + (x2)* + (yo)f = ~ 1
And if they do so, we shall have

£+‘/y+£:=: const.,

But in order to eliminate the constant, we may take three other variables &',¥',z/,
satisfying the same two equations of condition, and thence deduce

ﬁ+‘/;,+_/:,=const.

Whence by subtraction we eliminate the constant

WA f) (/- )+(/—-f)——o N

Now by the usual methods we find that the equations of condition are satisfied by
the values

r = -352342

y= '917532

z = 1°057860,
and also by the values

a = 392456

y 900227

2! 1:065602*,

* These values give
a¥ = — 0209149 2 = — 0'245862
y¥ = — 0'878885 y'* = — 0'854138
2= 1088034 2% = 1100000
Sum = 0 Sum= 0

This verifies the first equation of condition. The squares of these quantities are
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It remains therefore to try by actual calculation whether these values satisfy the
equation [1.].

1 ot 1.4 2°
f / s-atse-7+
da a 1.4
S f\/;@-—”w-i's 41567 T556.9° 10
— gt = &e.

s.oputting @ —ax =Awx,

R R AT

and since A x = ‘04011 is a small quantity, we readily find the sum of the series
= '04083. Treating the other variables in the same manner, the result obtained is

X-—_-ﬁ_ﬁ= -040834
Y :ﬁ_‘/y‘z 1027526
Z =ﬁ -—‘A‘: *013315.

With regard to the signs, it appears that the integral X has a sign opposed to that
of the other two. We find therefore finally,

Y + Z = ‘040841
X = ‘040834

- Y 4+ Z —X = +000007.
On the other hand the formula gives Y 4+ Z — X = 0, rigorously. Therefore the
computation is only in error in the sixth place of decimals, which in consequence of
the prolixity of these calculations may be considered to be a sufficient trial of its
accuracy.

2% = 043743 2" = +060448

Y= 772439 y's = 729552

2% = 1-183818 z/3 = 1-210000
Sum = 2 Sum = 2

Squaring the equation ot + y% + z7 = 0, we have
@+ + 2) +2ET TR+ gAT =0,
and substituting the value just found of 2% + ¥° 4 2° = 2, we have
TRy =L,

which verifies the second equation of condition.
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Note—The integrals comprised in the formula f % have been called ultra-

elliptic by Lecenpre. I think I have sufficiently shown that no line of distinction can
be drawn between them and integrals in general ; all of which, that are'functions of
a given polynomial, possess the property which was supposed to characterize the
ultra-elliptic class.



